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 The thermosolutal stability of a layer of the Rivlin-Ericksen fluid in a porous medium is considered under 
varying gravity conditions. It is found that for stationary convection, medium permeability and suspended 
particles have a destabilizing/stabilizing effect when gravity increases/decreases. The stable solute gradient has a 
stabilizing effect on the system.  
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1. Introduction 
 
 The first major contribution to the study of hydrodynamic stability can be found in the theoretical 
papers of Helmholtz [1]. The general linear stability theory for a inviscid plane parallel shear flow was 
investigated by Lord Rayleigh [2]. The significant contributions were made by Reynolds, Kelvin and 
Rayleigh. Stern [3] studied the problem of varying concentration of solute (solute is salt). Veronis [4] studied 
the case when the fluid layer is heated and soluted from below. Nield [5] considered the case of a fluid layer 
heated from below and soluted from above. The principles of thermosolutal convection are well documented 
by Bejan [6]. The experimental work of Bénard [7] gave rise to the problem of the onset of thermal 
instability in fluids heated from below. The Bénard problem and its extension were investigated by 
Chandrasekhar [8] and recognized by Rumford [9] and Thompson [10]. The instability of Bénard model has 
been a subject of interest till today and an excellent review of this work up to 1957 with special reference to 
its possible fields of application has been given by Ostrach [11]. 
 Thermal stability of a fluid layer under a variable gravitational field heated from below or above is 
investigated analytically by Pradhan and Samal [12]. Rana [13] investigated the thermosolutal convection in 
Walters’ fluid under varying gravity. The instability of non-Newtonian fluids (Walters’, Rivlin-Ericksen, etc) 
has been studied by several authors ([14]-[23], [24] and [25]).
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 In this paper, we have investigated the effect of suspended particles on thermosolutal convection in a 
Rivlin-Ericksen elastico-viscous fluid in a porous medium under varying gravity. It is the extension of the 
problem studied by Aggarwal and Prakash [14]. 
 
2. Mathematical model of the problem 
 
 Here we are considering a horizontal layer of an incompressible Rivlin-Ericksen fluid which is permeated 
with suspended particles, bounded by planes z = 0 and z = d. This fluid layer is subjected to variable gravity 
 , ,0 0 gg  where  ,0 0g g g 0    is the value of g at z = 0 and   is the variable gravity parameter, can be 

positive or negative. This fluid layer is heated and soluted from below and flowing through a porous medium. 
Then the governing equations of motion and continuity for the fluid flow can be written as  
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  The governing equations for the suspended particles (each of mass mN per unit volume) are given by 
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 If we consider the thermal and solute equilibrium between the fluid and solute particles then 
equations of heat and solute conduction can be written as  
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where ,s sC  are the density and specific heat of the solid material, respectively. 
 The linearized perturbation equations are given by 
 

     0
d

0 0 1

KN1 1 1
p g

t k t

                            

q
q q q ,         ….(2.7) 

   
  . 0 q , (2.8) 
 

  d
m

1
k t

    
q q , (2.9) 

 



Effect of suspended particles on thermosolutal ... 815 

   .0 d
N

N 0
t


   


q , (2.10) 

 

      2
1 1E h w h s

t


       


, (2.11) 

 

      2
1 1E h w h s

t

          


                                                  ….(2.12)
                    

 

where , , , ,  and 
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viscosity, kinematic viscoelasticity, thermal diffusivity and analogous solute diffusivity, respectively. 
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 Using the Boussinesq approximation, the linearized perturbation equations are  
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3. Dispersion relation 
 
 Consider that the two free boundaries (stress free) are at uniform temperature and solute 
concentration, then the boundary conditions are  
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 Solving the linearized perturbation equation, we get  
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 In the normal mode analysis method, perturbations are assumed in the following form  
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where, n is the growth rate and 2 2
x yk k k   is the resultant wave number of the disturbance.  

 Using Eqs (3.2) and (3.3), we get  
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4. The stationary convection 
 
 For the case of stationary convection, the neutral state is obtained by substituting n=0, Eq.(3.4) 
reduces to the form 
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 Now for the two free boundaries, all derivatives of W (even order) vanish so a proper solution of 
Eq.(4.1) in the lowest mode is 
 

  sin0W W z   (4.2) 
                                                                         
where 0W  is a constant .                 
 From Eqs (4.1) and (4.2), we obtain   
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 This relation is called the dispersion relation. 

 
5. Analytical analysis of instability of the system 
 
 To investigate the effects of various parameters such as the medium permeability, suspended 
particles, stable solute gradient and variable gravity on the instability of the system, the behavior of 
derivatives of relation (4.3) with respect to effecting parameters is examined. 
 Differentiation of Eq.(4.3) with respect to P1  gives 
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 It is evident that the effect of the medium permeability is to destabilize the system when gravity 
increases upwards from its value 0g  (i.e.,   is positive). This destabilizing effect is in accordance with the 
earlier work of Aggarwal and Prakash [1]. On the other hand, a stabilizing effect is observed when gravity 
decreases upwards from its value 0g  (i.e.,   is negative). 
 On differentiation of Eq.(4.3) with respect to H1, we obtain 
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 It is evident that suspended particles destabilize the system when gravity increases upwards from its value

0g  (i.e.,   is positive). This destabilizing effect is in accordance with the earlier work of Aggarwal and Prakash 

[14] and when gravity decreases upwards from its value 0g  (i.e.,   is negative) a stabilizing effect is observed. 
 On differentiation Eq.(4.3) with respect to S 
 

  
dR 1 q
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 This is positive implying thereby that the stable solute gradient has a stabilizing effect on the system. 
This stabilizing effect is in accordance with the earlier work of Aggarwal and Prakash [14]. 
 

6. Graphical analysis of instability of system 
 

 Graphically, it is shown in Figs 1-2 that as the values of permeability and suspended particles 
increase, the values of the Rayleigh number decreases implying the destabilizing effects on the system. On 
the other hand, in Fig.3, as the values of the solute gradient increase, the values of the Rayleigh number 
increase which shows the stabilizing effects on the system. 
 

 
 

Fig.1.  The Rayleigh number R1 varies with the wave number k (2, 4, 6..) for 2  , H1=10, S=10, 5   
and medium permeability P1 (=0.2, 0.4, 0.6, 0.8). 
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Fig.2.  The Rayleigh number R1 varies with the wave number k (2, 4, 6..) for 2  , S=10, P1=0.5, 5   

and suspended particle parameter H1 (=20, 40, 60, 80). 
 

 
 
Fig.3.  The Rayleigh number R1 varies with the wave number k (2, 4, 6..) for H1=50, P1=0.5, 2  , 5   

and solute gradient parameter S (=20, 40, 60, 80). 
 
7. Conclusion 
 
 In this paper, we have investigated the effect of various parameters such as suspended particles, 
medium permeability and stable solute gradient on thermosolutal convection in a Rivlin-Ericksen elastico-
viscous fluid under varying gravity. From the analysis, it is found that suspended particles and medium 
permeability destabilize the system (i.e., more unstable flow). When gravity increases upwards from its value 
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0g  and stabilizes the system (i.e., more stable flow) when gravity decreases upwards from its value 0g . The 
stable solute gradient has stabilizing effect and is independent of gravity field.  
 
Nomenclature  
 
      C  solute concentration 
     pC   heat capacity of fluid at constant pressure 

     ptC   heat capacity of particles 

     g  gravitational acceleration 
     g  gravitational acceleration vector 
      K  Stokes drag coefficient 
      k  wave number of disturbances 
      N  perturbation in number density 
      0N   number density of suspended particles 

      p  pressure of the fluid 
      R  thermal Rayleigh number 
      S  analogous Rayleigh number 
       , ,u v wq   velocity of the fluid 

      , ,d l r sq   velocity of suspended particles 

      q  effective thermal conductivity of pure fluid 
      q   analogous effective solute conductivity 

         steady adverse temperature gradient 

         solute gradient 

         perturbation in solute concentration 

      p   perturbation in pressure 

         perturbation in density 

        porosity of the medium 
         perturbation in temperature 
         thermal diffusivity 
         analogous solute diffusivity 
         density of the fluid 

         kinematic viscosity 
         kinematic viscoelasticity 
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